skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Filien, Leila"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cobalt phthalocyanine (CoPc) is a promising molecular catalyst for aqueous electroreduction of CO2, but its catalytic activity is limited by aggregation at high loadings. Codeposition of CoPc onto electrode surfaces with the coordinating polymer poly(4‐vinylpyridine) (P4VP) mitigates aggregation in addition to providing other catalytic enhancements. Transmission and diffuse reflectance UV–vis measurements demonstrate that a combination of axial coordination and π‐stacking effects from pyridyl moieties in P4VP serve to disperse cobalt phthalocyanine in deposition solutions and help prevent reaggregation in deposited films. Polymers lacking axial coordination, such as Nafion, are significantly less effective at cobalt phthalocyanine dispersion in both the deposition solution and in the deposited films. SEM images corroborate these findings through particle counts and morphological analysis. Electrochemical measurements show that CoPc codeposited with P4VPonto carbon electrode surfaces reduces CO2with higher activity and selectivity compared to the catalyst codeposited with Nafion. 
    more » « less
    Free, publicly-accessible full text available February 19, 2026
  2. Photoacid generators (PAGs) have facilitated a number of technology breakthroughs in the electronic, coating, and additive manufacturing industries. Traditionally, PAGs that contain weakly coordinating anions, such as PF6-, generate Brønsted superacids under UV irradiation for rapid cationic polymerizations. However, PAGs with strongly coordinating anions remain under-utilized as they form weak acids that are inefficient or even incapable of initiating polymerization. To expand the scope of potential counteranions in PAGs, we leveraged a thiophosphoramide hydrogen bond donor (HBD) to catalyze photoinitiated cationic polymerizations from diphenyliodonium PAGs. Through the formation of hydrogen bonds between the HBD and PAG counteranion, acceleration of the polymerization rate was observed for a range of non-coordinating and coordinating anions. The effect of the HBD on the polymerization kinetics was investigated by 1H-NMR titrations and geometry optimizations. Extending HBD catalysis beyond photopolymerizations, addition of HBD also enabled hydrochloric acid to initiate controlled reversible addition-fragmentation chain transfer (RAFT) polymerization under ambient conditions. With the versatility of HBD, there is potential to access initiation systems that were previously believed to be impractical for cationic polymerization. 
    more » « less